Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False It is possible to determine the equation for the PDF , given the equation for the CDF.

Solution: Taking the derivative of the CDF gives the PDF.
2. True FALSE Suppose that $f(x)=x$ for $-0.5 \leq x \leq 1.5$ and 0 everywhere else. Then f is a PDF.

Solution: This is false since $f(-0.5)=-0.5$ which is negative and PDFs cannot be negative.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (2 points) Suppose that $f(x)=C x^{2}$ for $-2 \leq x \leq 0$ and $f(x)=0$ for all other x for some constant C. If f is a PDF, then find C.

Solution: Since f is a PDF, we require that

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-2}^{0} C x^{2}=1
$$

This integral is

$$
\left.\int_{-2}^{0} C x^{=} \frac{C x^{3}}{3}\right|_{-2} ^{0}=\frac{8 C}{3}=1 .
$$

Therefore $C=\frac{3}{8}$.
(b) (4 points) Find the CDF of f from above. (Hint: the CDF will be piecewise)

Solution: For $x \leq-2$, then the CDF is 0 because the PDF is 0 there. Then for $-2 \leq x \leq 0$, we have that the CDF is

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-2}^{x} f(t) d t=\left.\frac{t^{3}}{8}\right|_{-2} ^{x}=1+\frac{x^{3}}{8}
$$

So

$$
F(x)= \begin{cases}0 & x \leq-2 \\ 1+\frac{x^{3}}{8} & -2 \leq x \leq 0 \\ 1 & x \geq 0\end{cases}
$$

(c) (4 points) Find the mean and median of the $\operatorname{PDF} f$ from above.

Solution: The mean is

$$
\int_{-2}^{0} x \frac{3 x^{2}}{8} d x=\int_{-2}^{0} \frac{3 x^{3}}{8}=\left.\frac{3 x^{4}}{32}\right|_{-2} ^{0}=\frac{-3}{2} .
$$

The median is when the CDF is $\frac{1}{2}$ which is when $1+\frac{x^{3}}{8}=\frac{1}{2}$ or at $x=-\sqrt[3]{4}$.

